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p-11B Fusion Plasma Physics Model & Assumptions(Y.K.M.Peng彭元凯)

Distinguishing features & R&D goals：

 Multi-fluid spinning plasma 
equilibrium (axisymmetric distributed 
macroscopic force-balance)

 Orbit-confined energetic electrons 
raise current-drive efficiency

 LCFS protected from edge recycling, 
improving plasma confinement

 Ion velocity differential and velocity 
distribution anisotropy ease Lawson 
Criterion triple product Tnt

Experiment and Analysis will Update Model and Continue ST Reinvention.

ENN’s target: p-11B Fusion Reactor based on ST*

*Huasheng Xie’s report in this session
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 Steady-state solenoid-free current drive

 Verification of multi-fluid equilibrium 

 Investigation of energy confinement 
performance  

Diameter 3.31 m

Height 2.81 m

Volume 24 m3

Materials S.S 316L

Weight 23 t

Baking Temperature 200 ℃

Vacuum Level 1×10-6 Pa

Parameters Values 

Plasma current 0.5 MA

Thermal ions major radius Ri 0.58 m

Toroidal magentic field at Ri 0.5T

Energetic electron cloud radius  0.7m

Thermal ions aspect ratio (LCFS) 1.5

Elongation ≈2

Thermal ions temperature 1 keV

Energetic electron temperature 0.23 MeV

Electron density 2 x1019/m3

Discharge TF flattop duration
5s @ 0.5T

20s @ 0.3 T

Mission of EXL-50：Experimental Verification of Physics Feasibility

mailto:s@0.5T
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EXL-50 Device

 Design started in Oct.2018

 Completion of machine construction and 
first plasma in Jul. 2019

 A medium-size ST without central 
solenoid(CS) 

 Benefits of CS-free ST
Simplification of center stack structure

Improvement of operation reliability
Enhancement of toroidal magnetic field 

BT  Ip , n  ，T  ，tE 

Pfusion ∝ p2 ∝ βT
2 BT

4

Is steady-state current drive possible for  
CS-free device?
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Heating and current drive system on EXL-50

H&CD system Parameters

ECRH 1.75MW

0#      1 x 28GHz/50kW/30s

1#-3#   3 x 28GHz/400kW/5s

5#        1 x 50GHz/500kW/1s

ICRF 0.14MW

3-26MHz/100kW

13.56MHz/40kW

LHCD 0.2MW

2.45GHz/200kW

NBI 1.5MW

50keV/1.5MW

Total design power 3.59MW

#0

#1

#2

#3

#5

Sketch of H & CD on EXL-50

Layout of ECRH on EXL-50



Magnetic measurements:

Rogowski loops, flux loops, magnetic 
probes,
Mirnov coils, diamagnetic loops

Operational parameters:

Visible/IR camera, 
pressure gauges, RGA

Electron density/Te/Ti:

Combined interferometer, TS, Probe, PHA, 
XCS, Vis spec

Impurities and radiation: 

Vis spec, Ha, CIII/OII, AXUV , VUV, EUV, 
sniffer probe(microwave stray radiation)

Energetic particles: 

HXR, ECE

Multi-scale fluctuations: 

Probe, ICE

Vis spectroscopy，fast 
reciprocating probe
Combined interferometer

Visible/IR camera 
Ha, CIII, OII, 
Vis spectroscopy, AXUV

Soft X-ray PHA
Ha

XCS
EUV/VUV

AXUV

Hard X-ray，ECE, ICE

TS

Diagnostics on EXL-50
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*Solenoid-free current drive via ECRH in EXL-50 spherical torus plasmas, Yuejiang Shi, Bing Liu,
Songdong Song, Yunyang Song, Xianming Song, et al., Nucl. Fusion. 086047(2022)
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High-efficiency current drive with ECRH on EXL-50

Optimized discharge waveforms for 
different 28GHz ECRH heating power.

Ip versus PECRH for 200 successful 
shots in EXL-50

PECRH IP

20kW 40kA

45kW 70kA

115kW 140kA

ηA/W = Ip/PECRH

ηA/W ~ 1A/W
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Plasma current in the flattop phase versus external Bv

 Ip increases with field Bv in the appropriate PECRH range.
 Bv is not a plasma current driving source, but it affects

the maximum plasma current driven by ECRH

High-efficiency current drive with ECRH on EXL-50

Ip/PECRH v.s. density
 Too low density is not conducive 

to an increase in plasma current.
 The suitable density for high Ip

increases with PECRH



Which current drive mechanism dominates in EXL-50? 

Pfirsch-Schluter current 𝑰𝐏𝐒 = 𝟐 < 𝐏 > Τ𝑺 𝑹𝑩𝒗

Bootstrap current 𝒇𝐏𝐒 ~𝑷

PS maybe important in breakdown and initial start-up phase

𝑰𝑷𝑺 is less than 1kA for the plasmas with closed flux field (CFS) equilibria in EXL-50

𝒇𝐏𝐒 𝐢𝐬 𝐬𝐞𝐯𝐞𝐫𝐚𝐥 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐬 𝐟𝐨𝐫 𝐄𝐗𝐋 − 𝟓𝟎′𝐒 plasmas

Traditional ECCD (Fisch-Boozer or 

Ohkawa) ? 

Traditional ECCD also can be neglected 

in current EXL-50’s plasma  

Two identical shots with same density, 

ECRH power and PF current. The toroidal 

angle for the ECRH antenna is setting as -

160 for counter-current drive in shot 7448, 

and 170 for co-current drive in shot 7449.

𝐭𝐨 𝐛𝐞 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐭𝐡𝐞𝐫𝐦𝐚𝐥 𝐩𝐥𝐚𝐬𝐦𝐚
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Conclusion of the following result?



Plasma current, energetic electrons (Bremsstrahlung HXR intensity) and 

energy content (HXR energy spectrum) are observed to increase conjointly
Random white spots indicate  

X-ray bombardment

Fast Camera

Observed Copious Confined Energetic Electrons, Carrying Large Fraction of Toroidal Current 

HXR Energy Spectra
#4700

#4701

#4702
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Additional likely explanation for high current driven efficiency

 Overlapping ECRH area for 
energies above 100keV

 Asymmetric velocity distribution of energetic 
electrons based on orbit confinement*

 Multi-harmonic resonance
 Multiple reflections and Multi-pass absorptions

The direction of Ip depends on

the direction of BV which

determines the asymmetric of v//.

 Up to five harmonic resonance 
layers exist in the vessel

*1.Experimental study of non-inductive current start-up using electron cyclotron wave on
EXL-50 spherical torus, M.Y.Wang, D.Guo, Y.J.Shi, et al,PPCF(2022)075006 *2.Particle orbit
description of cyclotron-driven current-carrying energetic electrons in the EXL-50
spherical torus, T Maekawa, YKM Peng, W Liu, submitted to Nucl. Fusion

Velocity distribution of 

energetic electrons
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 Multi-harmonic resonance*
 Multiple reflections （OX mode conversion） and Multi-pass absorption*

Simulation of 120kW Single-pass X-mode EC wave for 

EXL-50's plasmas

 Ip increases with harmonic numbers

 Driven current (20-35kA) up 5th harmonic with single-

pass is much lower than experimental results  (140kA)

 Current drive efficiency of O-
mode ECW is very low

 Multi-harmonic ECW 
current drive through 
multi-pass absorptions

*Investigation of the effectiveness of non-inductive `multi-harmonic' electron cyclotron current drive through 
modeling multi-pass absorptions in EXL-50--D. Banerjee, et al., https://arxiv.org/abs/2109.04161



What is the difference between EXL-50’s

energetic electron and tokamak’s runaway

electron？

What is the role of induction drive current in

EXL-50’s discharge?

15
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Although there is no CS coils on EXL-50, 
changes in PF coil current can induce toroidal 
electric field.

However, discharges with

constant PF currents

indicate that inductive

plasma current can be

neglected in EXL-50.

Driven source toroidal electron field ECRH
Velocity distribution P//>> P P// ~ P

Spatial pattern   inside core Wide distribution

Real image of RE beam 
in EAST（Y.J.Shi, RSI2010）

Runaway electron      Energetic electron
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Four-fluid equilibrium model with relativistic energetic electrons based 
on a relativistic dynamic magneto-fluid model*

 Multi-fluid equilibrium model with relativistic effect

𝛻 ∙ 𝛾𝑛𝒖 = 0

𝑚𝛾𝑢𝛁(𝛾𝑢𝑔𝑒𝑝) + 𝛁𝑇 + 𝑇𝛁ln𝑛 + 𝑞𝛾𝛁𝑉𝐸 = 𝑞𝛾𝒖 × 𝛀, where 𝛀 ≡ 𝑞−1𝛁 × 𝑷 = 𝑩+ 𝛁 × (𝑞−1𝑚𝛾𝑔𝑒𝑝𝒖)

𝛻 × 𝑩 = 𝜇0σ𝛼 𝒋𝛼 where 𝒋𝛼 = 𝑞𝛼𝛾𝛼𝑛𝛼𝒖𝛼

𝛻 ⋅ 𝑩 = 0

σ𝛼 𝑞𝛼𝛾𝛼𝑛𝛼 = 0 (the charge neutrality condition)

𝑔𝑒𝑝 ≡
𝜖+𝑝

𝑚𝑛𝑐2
=

𝐾3 Τ1 𝑇∗

𝐾2( Τ1 𝑇∗)
with  𝑇∗ ≡ Τ𝑇 𝑚𝑐2 and 𝐾𝑛 𝑧 =

𝜋
𝑧

2

𝑛

Γ(𝑛+
1

2
)
1׬
∞
𝑑𝑡𝑒−𝑧𝑡(𝑡2 − 1)𝑛−

1

2

𝛾 represents relativistic effect due to macroscopic motion in the laboratory frame;

𝑔𝑒𝑝 represents relativistic effect due to random motion of particles contained in a fluid element concerned.

For non-relativistic fluid component, i.e., thermal plasmas, 𝛾=1 and 𝑔𝑒𝑝=1.

 Four-fluid equilibrium model will be used for analyzing p-B plasmas including ion velocity 
differentials, and for EXL-75 design.

Thermal 
protons

Relativistic
Energetic Electrons

Thermal 
Electrons

++ Thermal 
borons

+Four-fluid =

* Four-Fluid Axisymmetric Plasma Equilibrium Model Including Relativistic Electrons and Computational Method 
and Results--A Ishida, YKM Peng, W Liu；Physics of Plasmas, 28(2021)032503
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Three-fluid equilibrium theory and computation compare well with 
experimental data

A 3-fluid equilibrium near-reproduction of an EXL-50 Plasma #9551@2.45s

Plasma parameters
#9551@2.45s

EXL-50 Data
Calculated
equilibrium

Flattop Ip (kA) 141.04 142 .51  (error=1.0%)

Line density (m-2) 1.04E+18 1.06E+18 (error=2.1%)

Energetic electron 

temperature (keV) ~200 (HXR, R~0.27m) 208 (peak=237)

Thermal electron

temperature (eV) ~60-100 (TS, R~ 0.7m) 81   (peak=84)

Thermal ion 

temperature (eV) ~20-30 (HeII ion) 25

Rlcfs (m) ~1.013 (OFIT) 1.0 (error= -1.3%)

Major radius(m) ~0.60   (OFIT) 0.593

Minor radius(m) ~0.41   (OFIT) 0.407

Aspect ratio of lcfs ~1.46 1.46

Energetic electron 

edge location (m) / 1.218

Energetic electron

peak density(m-3) / 3.15E+16 (成分=2.6%)

𝜷𝒕 of thermal plasma / 1.4%
Total 𝛽𝑡 / 1.1%

Total 𝛽𝑝 / 1.576

Total energy (kJ) / 4.4 

Contours of flux and current density

camera figure 

• Three-fluid equilibrium is shown to exist in EXL-50 by computing equilibrium that nearly reproduces available measurements

• Energetic electrons can exist also in open-field-line region, carry most toroidal current, and form LCFS
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Investigation of energetic electrons outside LCFS* 
Verification of multi-fluid equilibrium model 

model 

Metal probe far from LCFS are 
lighting by energetic electrons

Tips of Metal probe
were melted by
energetic electrons.

* Experimental study of the characteristics of energetic electrons outside LCFS in EXL-50 spherical torus --

D.Guo，Y.J.Shi，W.J.Liu，T.T.Sun, B.Liu et al.；Plasma Phys. Control. Fusion 64(2022)055009 
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High density current drive experiment on EXL-50

The plasma current reaches Ip > 80 
kA for high density (>5 × 1018 m−2) 

discharge with 150 kW ECRH.

PECRH is 20 kW. The density is about 
three times as the ordinary mode 

(O-mode) cut-off density

High density (11019m-2 ) discharge 
with 300kW ECRH

High-density discharges with 28 GHz ECRHHigh-density discharges with 
2.45 GHz ECRH at low Bt.
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Both the plasma current and current drive efficiency have reached new records in the CS-free 
RF experiments on EXL-50.

Survey of CS-free current drive with RF (ECRH or LHCD) 
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Summary of EXL-50 progress
 Demonstration of high efficiency steady-state CS-free

current drive with ECRH
ηA/W ~ 1A/W ηCD ~ 0.15×1019 AW−1 m−2

 Experimental verification of multi-fluid equilibrium model
 Achievement of high density (0.5~1× 1019 m−2) current drive

with ECRH alone

Experiment goal in 2023
 Higher density current drive via 50GHz +28GHz ECRH
 High ion temperature plasma via NBI
 Confirmation of energy confinement time
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EXL-50U

 New vacuum vessel and TF&PF magnetic coils

 Bt1.2 T at R=0.6m

 Flexible plasma shaping and current control

EXL-50 EXL-50U
2024 Upgrade

Main physics issues of EXL-50U
 Hot ion mode for ST (Ti/Te>1.5, Ti = 3~5keV)
 ST Energy confinement scaling for wide range scan of aspect ratio (1.4~1.8)

and Bt (0.5~1.2T)
 Other issues (MA non-inductive current drive ,….)



ENN Vision To become a respectable, innovative and
intelligent enterprise by creating a modern energy
system and improving the quality of people's life.

Welcome to ENN for R&D of p-B11 ST fusion research!
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Initial LHCD experimental results on EXL-50

100kW LHCD can drive  20kA current in ECRH plasmas
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基于玄龙高密度电流驱动实验的推测驱动效率与ECRH频率和磁场的关系

玄龙 2.45GHz 0.1T 𝜼𝑪𝑫 ~
𝟎. 𝟎𝟏𝟏𝟏𝟎𝟏𝟗𝑴𝑨𝑴𝑾𝒎

− 𝟐

玄龙 28GHz 0.5T 𝜼𝑪𝑫 ~
𝟎. 𝟏𝟑𝟏𝟎𝟏𝟗𝑴𝑨𝑴𝑾𝒎

− 𝟐

𝜼𝑪𝑫  𝒇𝑬𝑪𝑹𝑯
 𝐨𝐫 𝜼𝑪𝑫  𝑩𝑻


假定CD与频率或磁场强相关：

基于玄龙数据：  = 𝟏,  = 𝟏. 𝟓

外推170GHz ECRH和3.5T的ST：𝜼𝑪𝑫 ∶ 𝟎. 𝟕𝟗 𝒐𝒓 𝟐. 𝟒  𝟏𝟎𝟏𝟗𝑴𝑨𝑴𝑾𝒎
− 𝟐

R=1m的3.5T反应堆级别的ST：4-10MW 的170GHz的ECRH可以启动5MA电流
（密度21019m-3）
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(c) HX实验数据（红色：前向能谱，蓝色反向：能谱）
(d) 三温度模型HX射线模拟数据.
蓝色: T//F=10T =10T//B. 对应逃逸电子分布
红色：T//F=T , T//B =0.75T//F. 对应ECRH产生的高能电子分布.

电子-离子轫致辐射产生X射线截面分布

玄龙超热电子动量分布推算逃逸电子 超热电子
 动量分布 P//>> P P// ~ P

Forward HX
Backward HX



闭合磁面外存在高能电子



ECRH稳定阶段整体能量约束时间估算（优化运行）
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• 基于逆磁测量的整体能量（包含高能电子和

主等离子体） 约束时间（𝝉𝒕𝒐𝒕𝒂𝒍）分析：

 ECRH关断：𝝉𝒕𝒐𝒕𝒂𝒍 > 300ms

 ECRH加热：𝝉𝒕𝒐𝒕𝒂𝒍 = 200−300ms

挑战：

 整体储能中，高能电子贡献占主导，主等离子体

贡献较小，估算主等离子体能量约束时间存在较

大不确定性

 需要主等离子体加热，提高主等离子体储能贡献



热离子能量约束时间初步估算-15772
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玄龙-50外层超热电子估算

32

 工程模拟了可以造成钨融化的边界边界热流阈值 ~4.2MW 

 用边界热流计算公式给出了等离子体的热通量，进而在假设超热电子密度的条件下可以

给出探针扫描区域的超热电子平均能量范围。


