

Overview of EXL-50 Research Progress and Future Plan

石躍江 Yuejiang Shi For ENN Fusion Research Center

ENN Science and Technology Development Co., Ltd

Oct. 31- Nov. 4 2022, Tsinghua University (on-line), Beijing, China

Outline

- I. Introduction: ENN XuanLong-50 (EXL-50)
- Innovation and Mission
- Device and machine status
- II. Research Progress on EXL-50
- Progress of Solenoid-free current drive experiments
- > Investigation of plasma current drive mechanisms
- Energetic electrons and Multi-fluid equilibrium model
- > High density experiment

III. Summary and Future Plan

ENN's target: p-¹¹B Fusion Reactor based on ST*

p-11B Fusion Plasma Physics Model & Assumptions(Y.K.M.Peng彭元凯)

Distinguishing features & R&D goals:

- Multi-fluid spinning plasma equilibrium (axisymmetric distributed macroscopic force-balance)
- Orbit-confined energetic electrons raise current-drive efficiency
- LCFS protected from edge recycling, improving plasma confinement
- Ion velocity differential and velocity distribution anisotropy ease Lawson Criterion triple product Tnτ

Experiment and Analysis will Update Model and Continue ST Reinvention.

*Huasheng Xie's report in this session

Mission of EXL-50: Experimental Verification of Physics Feasibility

Steady-state solenoid-free current drive
Verification of multi-fluid equilibrium
Investigation of energy confinement

performance

Parameters	Values
Plasma current	0.5 MA
Thermal ions major radius <i>R</i> _i	0.58 m
Toroidal magentic field at R _i	0.5T
Energetic electron cloud radius	0.7m
Thermal ions aspect ratio (LCFS)	1.5
Elongation	≈2
Thermal ions temperature	1 keV
Energetic electron temperature	0.23 MeV
Electron density	2 x10 ¹⁹ /m ³
Discharge TF flattop duration	5 <u>s @ 0.5T</u> 20s @ 0.3 T

Diameter	3.31 m
Height	2.81 m
Volume	24 m ³
Materials	S.S 316L
Weight	23 t
Baking Temperature	200 °C
Vacuum Level	1×10 ⁻⁶ Pa

4

EXL-50 Device

- Design started in Oct.2018
- Completion of machine construction and first plasma in Jul. 2019
- > A medium-size ST without central solenoid(CS)
- Benefits of CS-free ST Simplification of center stack structure Improvement of operation reliability Enhancement of toroidal magnetic field

 $\begin{array}{l} \textbf{B}_{T} \uparrow \Rightarrow \textbf{I}_{p} \uparrow, \textbf{n} \uparrow, \textbf{T} \uparrow, \textbf{\tau}_{E} \uparrow\\ \textbf{P}_{fusion} \propto \langle p \rangle^{2} \propto \beta_{T}^{2} \textbf{B}_{T}^{4} \end{array}$

Is steady-state current drive possible for CS-free device?

Heating and current drive system on EXL-50

Layout of ECRH on EXL-50

H&CD system	Parameters	
ECRH	1.75MW0#1 x 28GHz/50kW/30s1#-3#3 x 28GHz/400kW/5s5#1 x 50GHz/500kW/1s	
ICRF	0.14MW 3-26MHz/100kW 13.56MHz/40kW	
LHCD	0.2MW 2.45GHz/200kW	
NBI	1.5MW 50keV/1.5MW	
Total <mark>design</mark> power	3.59MW	

Sketch of H & CD on EXL-50

Diagnostics on EXL-50

Magnetic measurements:

Rogowski loops, flux loops, magnetic probes,

Mirnov coils, diamagnetic loops

Operational parameters:

Visible/IR camera,

pressure gauges, RGA

Electron density/Te/Ti:

Combined interferometer, TS, Probe, PHA, XCS, Vis spec

Impurities and radiation:

Vis spec, Ha, CIII/OII, AXUV, VUV, EUV, sniffer probe(microwave stray radiation)

Energetic particles:

HXR, ECE

Multi-scale fluctuations:

Probe, ICE

Outline

- I. Introduction: ENN XuanLong-50 (EXL-50)
- Innovation and Mission
- Device and machine status

II. Research Progress on EXL-50*

- Progress of Solenoid-free current drive experiments
- > Investigation of plasma current drive mechanisms
- Energetic electrons and Multi-fluid equilibrium model
- > High density experiment

III. Summary and Future Plan

*Solenoid-free current drive via ECRH in EXL-50 spherical torus plasmas, Yuejiang Shi, Bing Liu, Songdong Song, Yunyang Song, Xianming Song, et al., Nucl. Fusion. 086047(2022)

High-efficiency current drive with ECRH on EXL-50

Optimized discharge waveforms for different 28GHz ECRH heating power.

Ip versus P_{ECRH} for 200 successful shots in EXL-50

High-efficiency current drive with ECRH on EXL-50

Plasma current in the flattop phase versus external B_v \geq Ip increases with field B_v in the appropriate P_{ECRH} range.

Bv is not a plasma current driving source, but it affects the maximum plasma current driven by ECRH

The suitable density for high Ip increases with P_{ECRH}

Which current drive mechanism dominates in EXL-50?

Pfirsch-Schluter current

 $I_{\rm PS} = 2 < P > S/R B_v$

PS maybe important in breakdown and initial start-up phase I_{PS} is less than 1kA for the plasmas with closed flux field (CFS) equilibria in EXL-50

Bootstrap current $f_{PS} \sim \nabla P$

 $f_{\rm PS}$ is several percents for EXL – 50'S plasmas

Traditional ECCD (Fisch-Boozer or Ohkawa) ?

to be estimated for the thermal plasma

Conclusion of the following result?

Two identical shots with same density, ECRH power and PF current. The toroidal angle for the ECRH antenna is setting as -16⁰ for counter-current drive in shot 7448, and 17⁰ for co-current drive in shot 7449.

Traditional ECCD also can be neglected in current EXL-50's plasma

Observed Copious Confined Energetic Electrons, Carrying Large Fraction of Toroidal Current

Random white spots indicate X-ray bombardment Plasma current, energetic electrons (Bremsstrahlung HXR intensity) and energy content (HXR energy spectrum) are observed to increase conjointly

Additional likely explanation for high current driven efficiency

- > Asymmetric velocity distribution of energetic electrons based on orbit confinement*
- > Multi-harmonic resonance
- > Multiple reflections and Multi-pass absorptions

*1.Experimental study of non-inductive current start-up using electron cyclotron wave on EXL-50 spherical torus, M.Y.Wang, D.Guo, Y.J.Shi, et al, PPCF(2022)075006 *2.Particle orbit description of cyclotron-driven current-carrying energetic electrons in the EXL-50 spherical torus, T Maekawa, YKM Peng, W Liu, submitted to Nucl. Fusion

Overlapping ECRH area for

energies above 100keV

13

Energy (keV)

Multi-harmonic resonance* Multiple reflections (OX mode conversion) and Multi-pass absorption*

Simulation of 120kW Single-pass X-mode EC wave for EXL-50's plasmas

- > Ip increases with harmonic numbers
- Driven current (20-35kA) up 5th harmonic with singlepass is much lower than experimental results (140kA)

*Investigation of the effectiveness of non-inductive `multi-harmonic' electron cyclotron current drive through modeling multi-pass absorptions in EXL-50--D. Banerjee, et al., https://arxiv.org/abs/2109.04161

Multi-harmonic ECW

current drive through

multi-pass absorptions

 \triangleright

What is the difference between EXL-50's energetic electron and tokamak's runaway electron?

What is the role of induction drive current in EXL-50's discharge?

in EAST (Y.J.Shi, RSI2010)

Themal plasma inside LCFS Energeric electrons exist inside and outside LCSF

Although there is no CS coils on EXL-50, changes in PF coil current can induce toroidal electric field. However, discharges with constant PF currents indicate that inductive plasma current can be neglected in EXL-50.

Four-fluid equilibrium model with relativistic energetic electrons based on a relativistic dynamic magneto-fluid model*

Multi-fluid equilibrium model with relativistic effect

 $\nabla \cdot (\gamma n \boldsymbol{u}) = 0$

 $m\gamma u \nabla (\gamma u g_{ep}) + \nabla T + T \nabla \ln n + q\gamma \nabla V_E = q\gamma u \times \Omega, \text{ where } \Omega \equiv q^{-1} \nabla \times P = B + \nabla \times (q^{-1} m \gamma g_{ep} u)$ $\nabla \times B = \mu_0 \sum_{\alpha} j_{\alpha} \text{ where } j_{\alpha} = q_{\alpha} \gamma_{\alpha} n_{\alpha} u_{\alpha}$ $\nabla \cdot B = 0$

 $\sum_{\alpha} q_{\alpha} \gamma_{\alpha} n_{\alpha} = 0$ (the charge neutrality condition)

$$g_{ep} \equiv \frac{\epsilon + p}{mnc^2} = \frac{K_3(1/T^*)}{K_2(1/T^*)} \text{ with } T^* \equiv T/mc^2 \text{ and } K_n(z) = \frac{\sqrt{\pi} \left(\frac{z}{2}\right)^n}{\Gamma(n + \frac{1}{2})} \int_1^\infty dt e^{-zt} (t^2 - 1)^{n - \frac{1}{2}}$$

 γ represents relativistic effect due to macroscopic motion in the laboratory frame;

 g_{ep} represents relativistic effect due to random motion of particles contained in a fluid element concerned. For non-relativistic fluid component, i.e., thermal plasmas, $\gamma=1$ and $g_{ep}=1$.

Four-fluid equilibrium model will be used for analyzing p-B plasmas including ion velocity differentials, and for EXL-75 design.

* Four-Fluid Axisymmetric Plasma Equilibrium Model Including Relativistic Electrons and Computational Method and Results--A Ishida, YKM Peng, W Liu; Physics of Plasmas, 28(2021)032503

Three-fluid equilibrium theory and computation compare well with experimental data

A 3-fluid equilibrium near-reproduction of an EXL-50 Plasma #9551@2.45s

Plasma parameters #9551@2.45s	EXL-50 Data	Calculated equilibrium
Flattop Ip (kA)	141.04	142.51 (error=1.0%)
Line density (m ⁻²)	1.04E+18	1.06E+18 (error=2.1%)
Energetic electron		
temperature (keV)	~200 (HXR, R~0.27m)	208 (peak=237)
Thermal electron		
temperature (eV)	~60-100 (TS, R~ 0.7m)	81 (peak=84)
Thermal ion		
temperature (eV)	~20-30 (HeII ion)	25
Rlcfs (m)	~1.013 (OFIT)	1.0 (error= -1.3%)
Major radius(m)	~0.60 (OFIT)	0.593
Minor radius(m)	~0.41 (OFIT)	0.407
Aspect ratio of lcfs	~1.46	1.46
Energetic electron		
edge location (m)	/	1.218
Energetic electron		
peak density(m ⁻³)	/	3.15E+16 (成分=2.6%)
βt of thermal plasma	1	1.4%
Total βt	/	1.1%
Total βp	/	1.576
Total energy (kJ)	1	4.4

- Three-fluid equilibrium is shown to exist in EXL-50 by computing equilibrium that nearly reproduces available measurements
- Energetic electrons can exist also in open-field-line region, carry most toroidal current, and form LCFS

Investigation of energetic electrons outside LCFS* → Verification of multi-fluid equilibrium model

Metal probe far from LCFS are lighting by energetic electrons

* Experimental study of the characteristics of energetic electrons outside LCFS in EXL-50 spherical torus --D.Guo, Y.J.Shi, W.J.Liu, T.T.Sun, B.Liu et al.; Plasma Phys. Control. Fusion 64(2022)055009

High density current drive experiment on EXL-50

High-density discharges with 28 GHz ECRH

P_{ECRH} is 20 kW. The density is about three times as the ordinary mode (O-mode) cut-off density

High-density discharges with

The plasma current reaches Ip > 80 kA for high density (>5 × 10¹⁸ m⁻²) discharge with 150 kW ECRH.

High density (1×10¹⁹m⁻²) discharge with 300kW ECRH

Survey of CS-free current drive with RF (ECRH or LHCD)

Both the plasma current and current drive efficiency have reached new records in the CS-free RF experiments on EXL-50.

Outline

- I. Introduction: ENN XuanLong-50 (EXL-50)
- Innovation and Mission
- > Device and machine status
- II. Research Progress on EXL-50
- Progress of Solenoid-free current drive experiments
- > Investigation of plasma current drive mechanisms
- > Energetic electrons and Multi-fluid equilibrium model
- > High density experiment

III. Summary and Future Plan

Summary of EXL-50 progress

- Demonstration of high efficiency steady-state CS-free current drive with ECRH
 - $\eta_{A/W} \sim 1A/W$ $\eta_{CD} \sim 0.15 \times 10^{19} \ AW^{-1} \ m^{-2}$
- > Experimental verification of multi-fluid equilibrium model
- Achievement of high density (0.5~1× 10¹⁹ m⁻²) current drive with ECRH alone

Experiment goal in 2023

- Higher density current drive via 50GHz +28GHz ECRH
- High ion temperature plasma via NBI
- Confirmation of energy confinement time

- **EXL-50U**
- > New vacuum vessel and TF&PF magnetic coils

EXL-50

> $B_t \rightarrow 1.2 \text{ T at } R=0.6 \text{m}$

Cross sectional view of the EXL-50U

Flexible plasma shaping and current control

Main physics issues of EXL-50U

- > Hot ion mode for ST ($T_i/T_e > 1.5$, $T_i = 3 \sim 5 \text{keV}$)
- ST Energy confinement scaling for wide range scan of aspect ratio (1.4~1.8) and B_t (0.5~1.2T)
- Other issues (MA non-inductive current drive ,....)

ENN Vision To become a respectable, innovative and intelligent enterprise by creating a modern energy system and improving the quality of people's life.

Welcome to ENN for R&D of p-B¹¹ ST fusion research!

Initial LHCD experimental results on EXL-50

100kW LHCD can drive 20kA current in ECRH plasmas

基于玄龙高密度电流驱动实验的推测驱动效率与ECRH频率和磁场的关系

玄龙 2.45GHz 0.1T η_{CD} $_{\circ}$ 0.011×10¹⁹ MA MW m $^{-2}$ 玄龙 28GHz 0.5T η_{CD} $_{\circ}$ 0.13×10¹⁹ MA MW m $^{-2}$ 假定 η_{CD} 与频率或磁场强相关: $\eta_{CD} \propto f_{ECRH}^{\alpha}$ or $\eta_{CD} \propto B_T^{\beta}$ 基于玄龙数据: $\alpha = 1$, $\beta = 1.5$

外推170GHz ECRH和3.5T的ST: η_{CD} : 0.79 or 2.4 × 10¹⁹ MA MW m⁻²

R=1m的3.5T反应堆级别的ST: 4-10MW 的170GHz的ECRH可以启动5MA电流 (密度2×10¹⁹m⁻³)

闭合磁面外存在高能电子

ECRH稳定阶段整体能量约束时间估算(优化运行)

热离子能量约束时间初步估算-15772

玄龙-50外层超热电子估算

- ◆ 工程模拟了可以造成钨融化的边界边界热流阈值 ~4.2MW
- ◆ 用边界热流计算公式给出了等离子体的热通量,进而在假设超热电子密度的条件下可以 给出探针扫描区域的超热电子平均能量范围。